Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LANCE: Efficient Low-Precision Quantized Winograd Convolution for Neural Networks Based on Graphics Processing Units (2003.08646v3)

Published 19 Mar 2020 in cs.CV, cs.LG, and cs.NE

Abstract: Accelerating deep convolutional neural networks has become an active topic and sparked an interest in academia and industry. In this paper, we propose an efficient low-precision quantized Winograd convolution algorithm, called LANCE, which combines the advantages of fast convolution and quantization techniques. By embedding linear quantization operations into the Winograd-domain, the fast convolution can be performed efficiently under low-precision computation on graphics processing units. We test neural network models with LANCE on representative image classification datasets, including SVHN, CIFAR, and ImageNet. The experimental results show that our 8-bit quantized Winograd convolution improves the performance by up to 2.40x over the full-precision convolution with trivial accuracy loss.

Citations (14)

Summary

We haven't generated a summary for this paper yet.