Conserved quantities and regularity in fluid dynamics (2003.07807v1)
Abstract: Conserved or dissipated quantities, like energy or entropy, are at the heart of the study of many classes of time-dependent PDEs in connection with fluid mechanics. This is the case, for instance, for the Euler and Navier-Stokes equations, for systems of conservation laws, and for transport equations. In all these cases, a formally conserved quantity may no longer be constant in time for a weak solution at low regularity. The delicate interplay between regularity and conservation of the respective quantity relates to renormalisation in the DiPerna-Lions theory of transport and continuity equations, and to Onsager's conjecture in the realm of ideal incompressible fluids. We will review the classical commutator methods of DiPerna-Lions and Constantin-E-Titi, and then proceed to more recent results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.