Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convex Risk Measures based on Divergence

Published 17 Mar 2020 in q-fin.RM | (2003.07648v2)

Abstract: Risk measures connect probability theory or statistics to optimization, particularly to convex optimization. They are nowadays standard in applications of finance and in insurance involving risk aversion. This paper investigates a wide class of risk measures on Orlicz spaces. The characterizing function describes the decision maker's risk assessment towards increasing losses. We link the risk measures to a crucial formula developed by Rockafellar for the Average Value-at-Risk based on convex duality, which is fundamental in corresponding optimization problems. We characterize the dual and provide complementary representations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.