Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Renormalized Oscillation Theory for Symplectic Eigenvalue Problems with Nonlinear Dependence on the Spectral Parameter (2003.06855v1)

Published 15 Mar 2020 in math.DS and math.SP

Abstract: In this paper we establish new renormalized oscillation theorems for discrete symplectic eigenvalue problems with Dirichlet boundary conditions. These theorems present the number of finite eigenvalues of the problem in arbitrary interval $(a,b]$ using number of focal points of a transformed conjoined basis associated with Wronskian of two principal solutions of the symplectic system evaluated at the endpoints $a$ and $b.$ We suppose that the symplectic coefficient matrix of the system depends nonlinearly on the spectral parameter and that it satisfies certain natural monotonicity assumptions. In our treatment we admit possible oscillations in the coefficients of the symplectic system by incorporating their nonconstant rank with respect to the spectral parameter.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.