Papers
Topics
Authors
Recent
Search
2000 character limit reached

Renormalized Oscillation Theory for Symplectic Eigenvalue Problems with Nonlinear Dependence on the Spectral Parameter

Published 15 Mar 2020 in math.DS and math.SP | (2003.06855v1)

Abstract: In this paper we establish new renormalized oscillation theorems for discrete symplectic eigenvalue problems with Dirichlet boundary conditions. These theorems present the number of finite eigenvalues of the problem in arbitrary interval $(a,b]$ using number of focal points of a transformed conjoined basis associated with Wronskian of two principal solutions of the symplectic system evaluated at the endpoints $a$ and $b.$ We suppose that the symplectic coefficient matrix of the system depends nonlinearly on the spectral parameter and that it satisfies certain natural monotonicity assumptions. In our treatment we admit possible oscillations in the coefficients of the symplectic system by incorporating their nonconstant rank with respect to the spectral parameter.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.