Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-AI competing and winning against humans in iterated Rock-Paper-Scissors game (2003.06769v2)

Published 15 Mar 2020 in cs.GT and stat.ML

Abstract: Predicting and modeling human behavior and finding trends within human decision-making processes is a major problem of social science. Rock Paper Scissors (RPS) is the fundamental strategic question in many game theory problems and real-world competitions. Finding the right approach to beat a particular human opponent is challenging. Here we use an AI (artificial intelligence) algorithm based on Markov Models of one fixed memory length (abbreviated as "single AI") to compete against humans in an iterated RPS game. We model and predict human competition behavior by combining many Markov Models with different fixed memory lengths (abbreviated as "multi-AI"), and develop an architecture of multi-AI with changeable parameters to adapt to different competition strategies. We introduce a parameter called "focus length" (a positive number such as 5 or 10) to control the speed and sensitivity for our multi-AI to adapt to the opponent's strategy change. The focus length is the number of previous rounds that the multi-AI should look at when determining which Single-AI has the best performance and should choose to play for the next game. We experimented with 52 different people, each playing 300 rounds continuously against one specific multi-AI model, and demonstrated that our strategy could win against more than 95% of human opponents.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.