Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Asymptotic Network Independence and Step-Size for A Distributed Subgradient Method (2003.06739v3)

Published 15 Mar 2020 in math.OC, cs.SY, and eess.SY

Abstract: We consider whether distributed subgradient methods can achieve a linear speedup over a centralized subgradient method. While it might be hoped that distributed network of $n$ nodes that can compute $n$ times more subgradients in parallel compared to a single node might, as a result, be $n$ times faster, existing bounds for distributed optimization methods are often consistent with a slowdown rather than speedup compared to a single node. We show that a distributed subgradient method has this "linear speedup" property when using a class of square-summable-but-not-summable step-sizes which include $1/t{\beta}$ when $\beta \in (1/2,1)$; for such step-sizes, we show that after a transient period whose size depends on the spectral gap of the network, the method achieves a performance guarantee that does not depend on the network or the number of nodes. We also show that the same method can fail to have this "asymptotic network independence" property under the optimally decaying step-size $1/\sqrt{t}$ and, as a consequence, can fail to provide a linear speedup compared to a single node with $1/\sqrt{t}$ step-size.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)