Papers
Topics
Authors
Recent
2000 character limit reached

On compact subsets of Sobolev spaces on manifolds

Published 13 Mar 2020 in math.FA and math.AP | (2003.06456v1)

Abstract: It is common that a Sobolev space defined on $\mathbb{R}m$ has a non-compact embedding into an $Lp$-space, but it has subspaces for which this embedding becomes compact. There are three well known cases of such subspaces, the Rellich compactness, for a subspace of functions on a bounded domain (or an unbounded domain, sufficiently thin at infinity), the Strauss compactness, for a subspace of radially symmetric functions in $\mathbb{R}m$, and the weighted Sobolev spaces. Known generalizations of Strauss compactness include subspaces of functions with block-radial symmetry, subspaces of functions with certain symmetries on Riemannian manifolds, as well as similar subspaces of more general Besov and Triebel-Lizorkin spaces. Presence of symmetries can be interpreted in terms of the rising critical Sobolev exponent corresponding to the smaller effective dimension of the quotient space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.