First-Order Methods for Nonconvex Quadratic Minimization (2003.04546v1)
Abstract: We consider minimization of indefinite quadratics with either trust-region (norm) constraints or cubic regularization. Despite the nonconvexity of these problems we prove that, under mild assumptions, gradient descent converges to their global solutions, and give a non-asymptotic rate of convergence for the cubic variant. We also consider Krylov subspace solutions and establish sharp convergence guarantees to the solutions of both trust-region and cubic-regularized problems. Our rates mirror the behavior of these methods on convex quadratics and eigenvector problems, highlighting their scalability. When we use Krylov subspace solutions to approximate the cubic-regularized Newton step, our results recover the strongest known convergence guarantees to approximate second-order stationary points of general smooth nonconvex functions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.