Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

The orthogonal Lie algebra of operators: ideals and derivations (2003.01232v1)

Published 2 Mar 2020 in math.FA and math.OA

Abstract: We study in this paper the infinite-dimensional orthogonal Lie algebra $\mathcal{O}_C$ which consists of all bounded linear operators $T$ on a separable, infinite-dimensional, complex Hilbert space $\mathcal{H}$ satisfying $CTC=-T*$, where $C$ is a conjugation on $\mathcal{H}$. By employing results from the theory of complex symmetric operators and skew-symmetric operators, we determine the Lie ideals of $\mathcal{O}_C$ and their dual spaces. We study derivations of $\mathcal{O}_C$ and determine their spectra. These results complete some results of P. de la Harpe and provide interesting contrasts between $\mathcal{O}_C$ and the algebra $\mathcal{B(H)}$ of all bounded linear operators on $\mathcal{H}$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)