Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven super-parameterization using deep learning: Experimentation with multi-scale Lorenz 96 systems and transfer-learning (2002.11167v1)

Published 25 Feb 2020 in physics.ao-ph, nlin.CD, physics.comp-ph, physics.flu-dyn, physics.geo-ph, and stat.ML

Abstract: To make weather/climate modeling computationally affordable, small-scale processes are usually represented in terms of the large-scale, explicitly-resolved processes using physics-based or semi-empirical parameterization schemes. Another approach, computationally more demanding but often more accurate, is super-parameterization (SP), which involves integrating the equations of small-scale processes on high-resolution grids embedded within the low-resolution grids of large-scale processes. Recently, studies have used ML to develop data-driven parameterization (DD-P) schemes. Here, we propose a new approach, data-driven SP (DD-SP), in which the equations of the small-scale processes are integrated data-drivenly using ML methods such as recurrent neural networks. Employing multi-scale Lorenz 96 systems as testbed, we compare the cost and accuracy (in terms of both short-term prediction and long-term statistics) of parameterized low-resolution (LR), SP, DD-P, and DD-SP models. We show that with the same computational cost, DD-SP substantially outperforms LR, and is better than DD-P, particularly when scale separation is lacking. DD-SP is much cheaper than SP, yet its accuracy is the same in reproducing long-term statistics and often comparable in short-term forecasting. We also investigate generalization, finding that when models trained on data from one system are applied to a system with different forcing (e.g., more chaotic), the models often do not generalize, particularly when the short-term prediction accuracy is examined. But we show that transfer-learning, which involves re-training the data-driven model with a small amount of data from the new system, significantly improves generalization. Potential applications of DD-SP and transfer-learning in climate/weather modeling and the expected challenges are discussed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ashesh Chattopadhyay (26 papers)
  2. Adam Subel (9 papers)
  3. Pedram Hassanzadeh (45 papers)
Citations (54)

Summary

We haven't generated a summary for this paper yet.