Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ground Texture Based Localization Using Compact Binary Descriptors (2002.11061v2)

Published 25 Feb 2020 in cs.CV and cs.RO

Abstract: Ground texture based localization is a promising approach to achieve high-accuracy positioning of vehicles. We present a self-contained method that can be used for global localization as well as for subsequent local localization updates, i.e. it allows a robot to localize without any knowledge of its current whereabouts, but it can also take advantage of a prior pose estimate to reduce computation time significantly. Our method is based on a novel matching strategy, which we call identity matching, that is based on compact binary feature descriptors. Identity matching treats pairs of features as matches only if their descriptors are identical. While other methods for global localization are faster to compute, our method reaches higher localization success rates, and can switch to local localization after the initial localization.

Citations (8)

Summary

We haven't generated a summary for this paper yet.