Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Power Allocation and Virtual Cell Formation for Throughput-Optimal Vehicular Edge Networks in Highway Transportation (2002.10577v2)

Published 24 Feb 2020 in eess.SY, cs.NI, cs.SY, and eess.SP

Abstract: This paper investigates highly mobile vehicular networks from users' perspectives in highway transportation. Particularly, a centralized software-defined architecture is introduced in which centralized resources can be assigned, programmed, and controlled using the anchor nodes (ANs) of the edge servers. Unlike the legacy networks, where a typical user is served from only one access point (AP), in the proposed system model, a vehicle user is served from multiple APs simultaneously. While this increases the reliability and the spectral efficiency of the assisted users, it also necessitates an accurate power allocation in all transmission time slots. As such, a joint user association and power allocation problem is formulated to achieve enhanced reliability and weighted user sum rate. However, the formulated problem is a complex combinatorial problem, remarkably hard to solve. Therefore, fine-grained machine learning algorithms are used to efficiently optimize joint user associations and power allocations of the APs in a highly mobile vehicular network. Furthermore, a distributed single-agent reinforcement learning algorithm, namely SARL-MARL, is proposed which obtains nearly identical genie-aided optimal solutions within a nominal number of training episodes than the baseline solution. Simulation results validate that our solution outperforms existing schemes and can attain genie-aided optimal performances.

Citations (12)

Summary

We haven't generated a summary for this paper yet.