Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eco-Vehicular Edge Networks for Connected Transportation: A Distributed Multi-Agent Reinforcement Learning Approach (2003.01005v3)

Published 2 Mar 2020 in eess.SY, cs.NI, and cs.SY

Abstract: This paper introduces an energy-efficient, software-defined vehicular edge network for the growing intelligent connected transportation system. A joint user-centric virtual cell formation and resource allocation problem is investigated to bring eco-solutions at the edge. This joint problem aims to combat against the power-hungry edge nodes while maintaining assured reliability and data rate. More specifically, by prioritizing the downlink communication of dynamic eco-routing, highly mobile autonomous vehicles are served with multiple low-powered access points (APs) simultaneously for ubiquitous connectivity and guaranteed reliability of the network. The formulated optimization is exceptionally troublesome to solve within a polynomial time, due to its complicated combinatorial structure. Hence, a distributed multi-agent reinforcement learning (D-MARL) algorithm is proposed for eco-vehicular edges, where multiple agents cooperatively learn to receive the best reward. First, the algorithm segments the centralized action space into multiple smaller groups. Based on the model-free distributed Q learner, each edge agent takes its actions from the respective group. Also, in each learning state, a software-defined controller chooses the global best action from individual bests of the distributed agents. Numerical results validate that our learning solution achieves near-optimal performances within a small number of training episodes as compared with existing baselines.

Citations (18)

Summary

We haven't generated a summary for this paper yet.