Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Rollout Strategies for Bayesian Optimization (2002.10539v3)

Published 24 Feb 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Bayesian optimization (BO) is a class of sample-efficient global optimization methods, where a probabilistic model conditioned on previous observations is used to determine future evaluations via the optimization of an acquisition function. Most acquisition functions are myopic, meaning that they only consider the impact of the next function evaluation. Non-myopic acquisition functions consider the impact of the next $h$ function evaluations and are typically computed through rollout, in which $h$ steps of BO are simulated. These rollout acquisition functions are defined as $h$-dimensional integrals, and are expensive to compute and optimize. We show that a combination of quasi-Monte Carlo, common random numbers, and control variates significantly reduce the computational burden of rollout. We then formulate a policy-search based approach that removes the need to optimize the rollout acquisition function. Finally, we discuss the qualitative behavior of rollout policies in the setting of multi-modal objectives and model error.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Eric Hans Lee (7 papers)
  2. David Eriksson (22 papers)
  3. Bolong Cheng (3 papers)
  4. Michael McCourt (36 papers)
  5. David Bindel (33 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.