Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Newton-Okounkov polytopes of Schubert varieties arising from cluster structures (2002.09912v2)

Published 23 Feb 2020 in math.RT, math.AG, and math.CO

Abstract: The theory of Newton-Okounkov bodies is a generalization of that of Newton polytopes for toric varieties, and it gives a systematic method of constructing toric degenerations of projective varieties. In this paper, we study Newton-Okounkov bodies of Schubert varieties from the theory of cluster algebras. We construct Newton-Okounkov bodies using specific valuations which generalize extended g-vectors in cluster theory, and discuss how these bodies are related to string polytopes and Nakashima-Zelevinsky polytopes.

Summary

We haven't generated a summary for this paper yet.