Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Newton-Okounkov convex bodies of Schubert varieties and polyhedral realizations of crystal bases (1603.01346v1)

Published 4 Mar 2016 in math.QA and math.AG

Abstract: A Newton-Okounkov convex body is a convex body constructed from a projective variety with a valuation on its homogeneous coordinate ring; this is deeply connected with representation theory. For instance, the Littelmann string polytopes and the Feigin-Fourier-Littelmann-Vinberg polytopes are examples of Newton-Okounkov convex bodies. In this paper, we prove that the Newton-Okounkov convex body of a Schubert variety with respect to a specific valuation is identical to the Nakashima-Zelevinsky polyhedral realization of a Demazure crystal. As an application of this result, we show that Kashiwara's involution (*-operation) corresponds to a change of valuations on the rational function field.

Summary

We haven't generated a summary for this paper yet.