Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logarithmic Regret for Learning Linear Quadratic Regulators Efficiently (2002.08095v2)

Published 19 Feb 2020 in cs.LG and stat.ML

Abstract: We consider the problem of learning in Linear Quadratic Control systems whose transition parameters are initially unknown. Recent results in this setting have demonstrated efficient learning algorithms with regret growing with the square root of the number of decision steps. We present new efficient algorithms that achieve, perhaps surprisingly, regret that scales only (poly)logarithmically with the number of steps in two scenarios: when only the state transition matrix $A$ is unknown, and when only the state-action transition matrix $B$ is unknown and the optimal policy satisfies a certain non-degeneracy condition. On the other hand, we give a lower bound that shows that when the latter condition is violated, square root regret is unavoidable.

Citations (60)

Summary

We haven't generated a summary for this paper yet.