Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making Non-Stochastic Control (Almost) as Easy as Stochastic (2006.05910v2)

Published 10 Jun 2020 in cs.LG, math.OC, and stat.ML

Abstract: Recent literature has made much progress in understanding \emph{online LQR}: a modern learning-theoretic take on the classical control problem in which a learner attempts to optimally control an unknown linear dynamical system with fully observed state, perturbed by i.i.d. Gaussian noise. It is now understood that the optimal regret on time horizon $T$ against the optimal control law scales as $\widetilde{\Theta}(\sqrt{T})$. In this paper, we show that the same regret rate (against a suitable benchmark) is attainable even in the considerably more general non-stochastic control model, where the system is driven by \emph{arbitrary adversarial} noise (Agarwal et al. 2019). In other words, \emph{stochasticity confers little benefit in online LQR}. We attain the optimal $\widetilde{\mathcal{O}}(\sqrt{T})$ regret when the dynamics are unknown to the learner, and $\mathrm{poly}(\log T)$ regret when known, provided that the cost functions are strongly convex (as in LQR). Our algorithm is based on a novel variant of online Newton step (Hazan et al. 2007), which adapts to the geometry induced by possibly adversarial disturbances, and our analysis hinges on generic "policy regret" bounds for certain structured losses in the OCO-with-memory framework (Anava et al. 2015). Moreover, our results accomodate the full generality of the non-stochastic control setting: adversarially chosen (possibly non-quadratic) costs, partial state observation, and fully adversarial process and observation noise.

Citations (36)

Summary

We haven't generated a summary for this paper yet.