Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Divide and Conquer Algorithm of Bayesian Density Estimation (2002.07094v1)

Published 17 Feb 2020 in stat.ME

Abstract: Data sets for statistical analysis become extremely large even with some difficulty of being stored on one single machine. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bayesian mixture modeling including the infinite mixture case. The methodology can be generalized to other application problems where a Bayesian mixture model is adopted. The proposed prior on each machine or subsample modifies the original prior on both mixing probabilities as well as on the rest of parameters in the distributions being mixed. The ultimate estimator is obtained by taking the average of the posterior samples corresponding to the proposed prior on each subset. Despite the tremendous reduction in time thanks to data splitting, the posterior contraction rate of the proposed estimator stays the same (up to a log factor) as that of the original prior when the data is analyzed as a whole. Simulation studies also justify the competency of the proposed method compared to the established WASP estimator in the finite dimension case. In addition, one of our simulations is performed in a shape constrained deconvolution context and reveals promising results. The application to a GWAS data set reveals the advantage over a naive method that uses the original prior.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube