Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
45 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
39 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
460 tokens/sec
Kimi K2 via Groq Premium
219 tokens/sec
2000 character limit reached

The Design of Dynamic Probabilistic Caching with Time-Varying Content Popularity (2002.06251v1)

Published 12 Jan 2020 in cs.NI, cs.SY, and eess.SY

Abstract: In this paper, we design dynamic probabilistic caching for the scenario when the instantaneous content popularity may vary with time while it is possible to predict the average content popularity over a time window. Based on the average content popularity, optimal content caching probabilities can be found, e.g., from solving optimization problems, and existing results in the literature can implement the optimal caching probabilities via static content placement. The objective of this work is to design dynamic probabilistic caching that: i) converge (in distribution) to the optimal content caching probabilities under time-invariant content popularity, and ii) adapt to the time-varying instantaneous content popularity under time-varying content popularity. Achieving the above objective requires a novel design of dynamic content replacement because static caching cannot adapt to varying content popularity while classic dynamic replacement policies, such as LRU, cannot converge to target caching probabilities (as they do not exploit any content popularity information). We model the design of dynamic probabilistic replacement policy as the problem of finding the state transition probability matrix of a Markov chain and propose a method to generate and refine the transition probability matrix. Extensive numerical results are provided to validate the effectiveness of the proposed design.

Citations (63)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.