Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Learning with Conditional Value at Risk (2002.05826v1)

Published 14 Feb 2020 in cs.LG and stat.ML

Abstract: We propose a risk-averse statistical learning framework wherein the performance of a learning algorithm is evaluated by the conditional value-at-risk (CVaR) of losses rather than the expected loss. We devise algorithms based on stochastic gradient descent for this framework. While existing studies of CVaR optimization require direct access to the underlying distribution, our algorithms make a weaker assumption that only i.i.d.\ samples are given. For convex and Lipschitz loss functions, we show that our algorithm has $O(1/\sqrt{n})$-convergence to the optimal CVaR, where $n$ is the number of samples. For nonconvex and smooth loss functions, we show a generalization bound on CVaR. By conducting numerical experiments on various machine learning tasks, we demonstrate that our algorithms effectively minimize CVaR compared with other baseline algorithms.

Citations (38)

Summary

We haven't generated a summary for this paper yet.