Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning with CVaR-based feedback under potentially heavy tails (2006.02001v1)

Published 3 Jun 2020 in stat.ML and cs.LG

Abstract: We study learning algorithms that seek to minimize the conditional value-at-risk (CVaR), when all the learner knows is that the losses incurred may be heavy-tailed. We begin by studying a general-purpose estimator of CVaR for potentially heavy-tailed random variables, which is easy to implement in practice, and requires nothing more than finite variance and a distribution function that does not change too fast or slow around just the quantile of interest. With this estimator in hand, we then derive a new learning algorithm which robustly chooses among candidates produced by stochastic gradient-driven sub-processes. For this procedure we provide high-probability excess CVaR bounds, and to complement the theory we conduct empirical tests of the underlying CVaR estimator and the learning algorithm derived from it.

Citations (4)

Summary

We haven't generated a summary for this paper yet.