Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Linearizable boundary value problems for the elliptic sine-Gordon and the elliptic Ernst equations (2002.05244v1)

Published 12 Feb 2020 in math.AP and nlin.SI

Abstract: By employing a novel generalization of the inverse scattering transform method known as the unified transform or Fokas method, it can be shown that the solution of certain physically significant boundary value problems for the elliptic sine-Gordon equation, as well as for the elliptic version of the Ernst equation, can be expressed in terms of the solution of appropriate $2 \times 2$-matrix Riemann--Hilbert (RH) problems. These RH problems are defined in terms of certain functions, called spectral functions, which involve the given boundary conditions, but also unknown boundary values. For arbitrary boundary conditions, the determination of these unknown boundary values requires the analysis of a nonlinear Fredholm integral equation. However, there exist particular boundary conditions, called linearizable, for which it is possible to bypass this nonlinear step and to characterize the spectral functions directly in terms of the given boundary conditions. Here, we review the implementation of this effective procedure for the following linearizable boundary value problems: (a) the elliptic sine-Gordon equation in a semi-strip with zero Dirichlet boundary values on the unbounded sides and with constant Dirichlet boundary value on the bounded side; (b) the elliptic Ernst equation with boundary conditions corresponding to a uniformly rotating disk of dust; (c) the elliptic Ernst equation with boundary conditions corresponding to a disk rotating uniformly around a central black hole; (d) the elliptic Ernst equation with vanishing Neumann boundary values on a rotating disk.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)