Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Machine Learning-Assisted Anomaly Detection in Maritime Navigation Using AIS Data (2002.05013v1)

Published 10 Feb 2020 in eess.SP

Abstract: The automatic identification system (AIS) reports vessels' static and dynamic information, which are essential for maritime traffic situation awareness. However, AIS transponders can be switched off to hide suspicious activities, such as illegal fishing, or piracy. Therefore, this paper uses real world AIS data to analyze the possibility of successful detection of various anomalies in the maritime domain. We propose a multi-class artificial neural network (ANN)-based anomaly detection framework to classify intentional and non-intentional AIS on-off switching anomalies. The multi-class anomaly framework captures AIS message dropouts due to various reasons, e.g., channel effects or intentional one for carrying illegal activities. We extract position, speed, course and timing information from real world AIS data, and use them to train a 2-class (normal and anomaly) and a 3-class (normal, power outage and anomaly) anomaly detection models. Our results show that the models achieve around 99.9% overall accuracy, and are able to classify a test sample in the order of microseconds.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.