Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Bang Calculus Revisited (2002.04011v6)

Published 10 Feb 2020 in cs.LO and cs.PL

Abstract: Call-by-Push-Value (CBPV) is a programming paradigm subsuming both Callby-Name (CBN) and Call-by-Value (CBV) semantics. The essence of this paradigm is captured by the Bang Calculus, a (concise) term language connecting CBPV and Linear Logic. This paper presents a revisited version of the Bang Calculus, called $\lambda !$, enjoying some important properties missing in the original formulation. Indeed, the new calculus integrates permutative conversions to unblock value redexes while being confluent at the same time. A second contribution is related to nonidempotent types. We provide a quantitative type system for our $\lambda !$-calculus, and we show that the length of the (weak) reduction of a typed term to its normal form plus the size of this normal form is bounded by the size of its type derivation. We also explore the properties of this type system with respect to CBN/CBV translations. We keep the original CBN translation from $\lambda$-calculus to the Bang Calculus, which preserves normal forms and is sound and complete with respect to the (quantitative) type system for CBN. However, in the case of CBV, we reformulate both the translation and the type system to restore two main properties: preservation of normal forms and completeness. Last but not least, the quantitative system is refined to a tight one, which transforms the previous upper bound on the length of reduction to normal form plus its size into two independent exact measures for them.

Citations (31)

Summary

We haven't generated a summary for this paper yet.