Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Faithful and Quantitative Notion of Distant Reduction for the Lambda-Calculus with Generalized Applications (2201.04156v4)

Published 11 Jan 2022 in cs.LO

Abstract: We introduce a call-by-name lambda-calculus $\lambda Jn$ with generalized applications which is equipped with distant reduction. This allows to unblock $\beta$-redexes without resorting to the standard permutative conversions of generalized applications used in the original $\Lambda J$-calculus with generalized applications of Joachimski and Matthes. We show strong normalization of simply-typed terms, and we then fully characterize strong normalization by means of a quantitative (i.e. non-idempotent intersection) typing system. This characterization uses a non-trivial inductive definition of strong normalization --related to others in the literature--, which is based on a weak-head normalizing strategy. We also show that our calculus $\lambda Jn$ relates to explicit substitution calculi by means of a faithful translation, in the sense that it preserves strong normalization. Moreover, our calculus $\lambda Jn$ and the original $\Lambda J$-calculus determine equivalent notions of strong normalization. As a consequence, $\lambda J$ inherits a faithful translation into explicit substitutions, and its strong normalization can also be characterized by the quantitative typing system designed for $\lambda Jn$, despite the fact that quantitative subject reduction fails for permutative conversions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. José Espírito Santo (11 papers)
  2. Delia Kesner (25 papers)
  3. Loïc Peyrot (4 papers)

Summary

We haven't generated a summary for this paper yet.