Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The contact structure on the space of null geodesics of causally simple spacetimes (2002.03949v1)

Published 10 Feb 2020 in math.DG, math-ph, math.MP, and math.SG

Abstract: It is shown that the space of null geodesics of a star-shaped causally simple subset of Minkowski space is contactomorphic to the canonical contact structure in the spherical cotangent bundle of $\mathbb{R}n$. In the $3$-dimensional case we prove a similar result for a large class of causally simple contractible subsets of an arbitrary globally hyperbolic spacetime applying methods from the theory of contact-convex surfaces. Moreover we prove that under certain assumptions the space of null geodesics of a causally simple spacetime embeds with smooth boundary into the space of null geodesics of a globally hyperbolic spacetime. The characteristic foliation of this boundary provides an invariant of the conformal class of the causally simple spacetime.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube