Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cusps and $q$-expansion principles for modular curves at infinite level (2002.02488v1)

Published 6 Feb 2020 in math.NT

Abstract: We develop an analytic theory of cusps for Scholze's $p$-adic modular curves at infinite level in terms of perfectoid parameter spaces for Tate curves. As an application, we describe a canonical tilting isomorphism between an anticanonical overconvergent neighbourhood of the ordinary locus of the modular curve at level $\Gamma_1(p\infty)$ and the analogous locus of an infinite level perfected Igusa variety. We also prove various $q$-expansion principles for functions on modular curves at infinite level, namely that the properties of extending to the cusps, vanishing, coming from finite level, and being bounded, can all be detected on $q$-expansions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)