Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regret analysis of the Piyavskii-Shubert algorithm for global Lipschitz optimization (2002.02390v4)

Published 6 Feb 2020 in cs.LG, math.OC, and stat.ML

Abstract: We consider the problem of maximizing a non-concave Lipschitz multivariate function over a compact domain by sequentially querying its (possibly perturbed) values. We study a natural algorithm designed originally by Piyavskii and Shubert in 1972, for which we prove new bounds on the number of evaluations of the function needed to reach or certify a given optimization accuracy. Our analysis uses a bandit-optimization viewpoint and solves an open problem from Hansen et al.\ (1991) by bounding the number of evaluations to certify a given accuracy with a near-optimal sum of packing numbers.

Citations (15)

Summary

We haven't generated a summary for this paper yet.