Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Conditioning Treatment of Neural Networks (2002.01523v3)

Published 4 Feb 2020 in cs.LG and stat.ML

Abstract: We study the role of depth in training randomly initialized overparameterized neural networks. We give a general result showing that depth improves trainability of neural networks by improving the conditioning of certain kernel matrices of the input data. This result holds for arbitrary non-linear activation functions under a certain normalization. We provide versions of the result that hold for training just the top layer of the neural network, as well as for training all layers, via the neural tangent kernel. As applications of these general results, we provide a generalization of the results of Das et al. (2019) showing that learnability of deep random neural networks with a large class of non-linear activations degrades exponentially with depth. We also show how benign overfitting can occur in deep neural networks via the results of Bartlett et al. (2019b). We also give experimental evidence that normalized versions of ReLU are a viable alternative to more complex operations like Batch Normalization in training deep neural networks.

Citations (13)

Summary

We haven't generated a summary for this paper yet.