Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite Depth and Width Corrections to the Neural Tangent Kernel (1909.05989v1)

Published 13 Sep 2019 in cs.LG, math.PR, and stat.ML

Abstract: We prove the precise scaling, at finite depth and width, for the mean and variance of the neural tangent kernel (NTK) in a randomly initialized ReLU network. The standard deviation is exponential in the ratio of network depth to width. Thus, even in the limit of infinite overparameterization, the NTK is not deterministic if depth and width simultaneously tend to infinity. Moreover, we prove that for such deep and wide networks, the NTK has a non-trivial evolution during training by showing that the mean of its first SGD update is also exponential in the ratio of network depth to width. This is sharp contrast to the regime where depth is fixed and network width is very large. Our results suggest that, unlike relatively shallow and wide networks, deep and wide ReLU networks are capable of learning data-dependent features even in the so-called lazy training regime.

Citations (141)

Summary

We haven't generated a summary for this paper yet.