Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consensus-Based Optimization on Hypersurfaces: Well-Posedness and Mean-Field Limit (2001.11994v4)

Published 31 Jan 2020 in math.AP, cs.LG, and math.OC

Abstract: We introduce a new stochastic differential model for global optimization of nonconvex functions on compact hypersurfaces. The model is inspired by the stochastic Kuramoto-Vicsek system and belongs to the class of Consensus-Based Optimization methods. In fact, particles move on the hypersurface driven by a drift towards an instantaneous consensus point, computed as a convex combination of the particle locations weighted by the cost function according to Laplace's principle. The consensus point represents an approximation to a global minimizer. The dynamics is further perturbed by a random vector field to favor exploration, whose variance is a function of the distance of the particles to the consensus point. In particular, as soon as the consensus is reached, then the stochastic component vanishes. In this paper, we study the well-posedness of the model and we derive rigorously its mean-field approximation for large particle limit.

Citations (47)

Summary

We haven't generated a summary for this paper yet.