2000 character limit reached
Mixing convex-optimization bounds for maximum-entropy sampling
Published 31 Jan 2020 in math.OC | (2001.11896v1)
Abstract: The maximum-entropy sampling problem is a fundamental and challenging combinatorial-optimization problem, with application in spatial statistics. It asks to find a maximum-determinant order-$s$ principal submatrix of an order-$n$ covariance matrix. Exact solution methods for this NP-hard problem are based on a branch-and-bound framework. Many of the known upper bounds for the optimal value are based on convex optimization. We present a methodology for "mixing" these bounds to achieve better bounds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.