Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Elliptic Calabi-Yau Fourfold with Maximal $h^{1,1}$ (2001.07258v4)

Published 20 Jan 2020 in hep-th and math.AG

Abstract: In this paper, we explicitly construct the smooth compact base threefold for the elliptic Calabi-Yau fourfold with the largest known $h{1,1}=303\,148$. It is generated by blowing up a smooth toric "seed" base threefold with $(E_8,E_8,E_8)$ collisions. The 4d F-theory compactification model over it has the largest geometric gauge group, $E_8{2\,561}\times F_4{7\,576}\times G_2{20\,168}\times SU(2){30\,200}$, and the largest number of axions, $181\,820$, in the known 4d $\mathcal{N}=1$ supergravity landscape. We also prove that there are at least $1100{15\,048}\approx 7.5\times 10{45\,766}$ different flip and flop phases of this base threefold. Moreover, we find that many other base threefolds with large $h{1,1}$ in the 4d F-theory landscape can be constructed in a similar way as well.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube