Papers
Topics
Authors
Recent
2000 character limit reached

Bosonic ghostbusting -- The bosonic ghost vertex algebra admits a logarithmic module category with rigid fusion

Published 16 Jan 2020 in math.QA, hep-th, math-ph, math.MP, and math.RT | (2001.05986v3)

Abstract: The rank 1 bosonic ghost vertex algebra, also known as the $\beta \gamma$ ghosts, symplectic bosons or Weyl vertex algebra, is a simple example of a conformal field theory which is neither rational, nor $C_2$-cofinite. We identify a module category, denoted category $\mathscr{F}$, which satisfies three necessary conditions coming from conformal field theory considerations: closure under restricted duals, closure under fusion and closure under the action of the modular group on characters. We prove the second of these conditions, with the other two already being known. Further, we show that category $\mathscr{F}$ has sufficiently many projective and injective modules, give a classification of all indecomposable modules, show that fusion is rigid and compute all fusion products. The fusion product formulae turn out to perfectly match a previously proposed Verlinde formula, which was computed using a conjectured generalisation of the usual rational Verlinde formula, called the standard module formalism. The bosonic ghosts therefore exhibit essentially all of the rich structure of rational theories despite satisfying none of the standard rationality assumptions such as $C_2$-cofiniteness, the vertex algebra being isomorphic to its restricted dual or having a one-dimensional conformal weight 0 space. In particular, to the best of the authors' knowledge this is the first example of a proof of rigidity for a logarithmic non-$C_2$-cofinite vertex algebra.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.