Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Biorthogonal Greedy Algorithms in Convex Optimization (2001.05530v2)

Published 15 Jan 2020 in math.NA, cs.NA, and math.OC

Abstract: The study of greedy approximation in the context of convex optimization is becoming a promising research direction as greedy algorithms are actively being employed to construct sparse minimizers for convex functions with respect to given sets of elements. In this paper we propose a unified way of analyzing a certain kind of greedy-type algorithms for the minimization of convex functions on Banach spaces. Specifically, we define the class of Weak Biorthogonal Greedy Algorithms for convex optimization that contains a wide range of greedy algorithms. We analyze the introduced class of algorithms and establish the properties of convergence, rate of convergence, and numerical stability, which is understood in the sense that the steps of the algorithm are allowed to be performed not precisely but with controlled computational inaccuracies. We show that the following well-known algorithms for convex optimization -- the Weak Chebyshev Greedy Algorithm (co) and the Weak Greedy Algorithm with Free Relaxation (co) -- belong to this class, and introduce a new algorithm -- the Rescaled Weak Relaxed Greedy Algorithm (co). Presented numerical experiments demonstrate the practical performance of the aforementioned greedy algorithms in the setting of convex minimization as compared to optimization with regularization, which is the conventional approach of constructing sparse minimizers.

Citations (5)

Summary

We haven't generated a summary for this paper yet.