Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse approximation and recovery by greedy algorithms in Banach spaces (1303.6811v1)

Published 27 Mar 2013 in stat.ML and math.FA

Abstract: We study sparse approximation by greedy algorithms. We prove the Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA), a generalization of the Weak Orthogonal Matching Pursuit to the case of a Banach space. The main novelty of these results is a Banach space setting instead of a Hilbert space setting. The results are proved for redundant dictionaries satisfying certain conditions. Then we apply these general results to the case of bases. In particular, we prove that the WCGA provides almost optimal sparse approximation for the trigonometric system in $L_p$, $2\le p<\infty$.

Citations (26)

Summary

We haven't generated a summary for this paper yet.