Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

A deep machine learning algorithm for construction of the Kolmogorov-Arnold representation (2001.04652v2)

Published 14 Jan 2020 in math.OC, cs.SY, and eess.SY

Abstract: The Kolmogorov-Arnold representation is a proven adequate replacement of a continuous multivariate function by an hierarchical structure of multiple functions of one variable. The proven existence of such representation inspired many researchers to search for a practical way of its construction, since such model answers the needs of machine learning. This article shows that the Kolmogorov-Arnold representation is not only a composition of functions but also a particular case of a tree of the discrete Urysohn operators. The article introduces new, quick and computationally stable algorithm for constructing of such Urysohn trees. Besides continuous multivariate functions, the suggested algorithm covers the cases with quantised inputs and combination of quantised and continuous inputs. The article also contains multiple results of testing of the suggested algorithm on publicly available datasets, used also by other researchers for benchmarking.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.