Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Diffusion Approximations in the Online Increasing Subsequence Problem (2001.02249v1)

Published 7 Jan 2020 in math.PR

Abstract: The online increasing subsequence problem is a stochastic optimisation task with the objective to maximise the expected length of subsequence chosen from a random series by means of a nonanticipating decision strategy. We study the structure of optimal and near-optimal subsequences in a standardised planar Poisson framework. Following a long-standing suggestion by Bruss and Delbaen (Stoch. Proc. Appl. 114, 2004), we prove a joint functional limit theorem for the transversal fluctuations about the diagonal of the running maximum and the length processes. The limit is identified explicitly with a Gaussian time-inhomogeneous diffusion. In particular, the running maximum converges to a Brownian bridge, and the length process has another explicit non-Markovian limit.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.