Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Experimental Demonstration of Millimeter-Wave Radio-over-Fiber System with Convolutional Neural Network (CNN) and Binary Convolutional Neural Network (BCNN) (2001.02018v1)

Published 7 Jan 2020 in eess.SP

Abstract: The millimeter-wave (mm-wave) radio-over-fiber (RoF) systems have been widely studied as promising solutions to deliver high-speed wireless signals to end users, and neural networks have been studied to solve various linear and nonlinear impairments. However, high computation cost and large amounts of training data are required to effectively improve the system performance. In this paper, we propose and demonstrate highly computation efficient convolutional neural network (CNN) and binary convolutional neural network (BCNN) based decision schemes to solve these limitations. The proposed CNN and BCNN based decision schemes are demonstrated in a 5 Gbps 60 GHz RoF system for up to 20 km fiber distance. Compared with previously demonstrated neural networks, results show that the bit error rate (BER) performance and the computation intensive training process are improved. The number of training iterations needed is reduced by about 50 % and the amount of required training data is reduced by over 30 %. In addition, only one training is required for the entire measured received optical power range over 3.5 dB in the proposed CNN and BCNN schemes, to further reduce the computation cost of implementing neural networks decision schemes in mm-wave RoF systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.