Papers
Topics
Authors
Recent
2000 character limit reached

Distributional Metrics and the Action Principle of Einstein-Hilbert Gravity

Published 6 Jan 2020 in gr-qc | (2001.01806v1)

Abstract: In this work, a subclass of the generalized Kerr-Schild class of spacetimes is specified, with respect to which the Ricci tensor (regardless of the position of indices) proves to be linear in the so-called profile function of the geometry. Considering Colombeau's nonlinear theory of generalized functions, this result is extended to apply to an associated class of distributional Kerr-Schild geometries, and then used to formulate a variational principle for these singular spacetimes. More specifically, it is shown in this regard that a variation of a suitably regularized Einstein-Hilbert action can be performed even if the metric of one of the corresponding generalized Kerr-Schild representatives contains a generalized delta function that converges in a suitable limit to a delta distribution.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.