Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Inverse square singularities and eigenparameter dependent boundary conditions are two sides of the same coin (2001.00061v1)

Published 31 Dec 2019 in math-ph, math.CA, math.FA, math.MP, and math.SP

Abstract: We show that inverse square singularities can be treated as boundary conditions containing rational Herglotz--Nevanlinna functions of the eigenvalue parameter with "a negative number of poles". More precisely, we treat in a unified manner one-dimensional Schr\"{o}dinger operators with either an inverse square singularity or a boundary condition containing a rational Herglotz--Nevanlinna function of the eigenvalue parameter at each endpoint, and define Darboux-type transformations between such operators. These transformations allow one, in particular, to transfer almost any spectral result from boundary value problems with eigenparameter dependent boundary conditions to those with inverse square singularities, and vice versa.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube