Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

BV and BFV for the H-twisted Poisson sigma model (1912.13511v3)

Published 31 Dec 2019 in hep-th, math-ph, and math.MP

Abstract: We present the BFV and the BV extension of the Poisson sigma model (PSM) twisted by a closed 3-form H. There exist superfield versions of these functionals such as for the PSM and, more generally, for the AKSZ sigma models. However, in contrast to those theories, here they depend on the Euler vector field of the source manifold and contain terms mixing data from the source and the target manifold. Using an auxiliary connection $\nabla$ on the target manifold M, we obtain alternative, purely geometrical expressions without the use of superfields, which are new also for the ordinary PSM and promise straightforward adaptations to other Lie algebroid based gauge theories: The BV functional, in particular, is the sum of the classical action, the Hamiltonian lift of the (only on-shell-nilpotent) BRST differential, and a term quadratic in the antifields which is essentially the basic curvature and measures the compatibility of $\nabla$ with the Lie algebroid structure on T*M. We finally construct a Diff(M)-equivariant isomorphism between the two BV formulations.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.