Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning in Discounted-cost and Average-cost Mean-field Games (1912.13309v3)

Published 31 Dec 2019 in eess.SY, cs.LG, cs.SY, and math.OC

Abstract: We consider learning approximate Nash equilibria for discrete-time mean-field games with nonlinear stochastic state dynamics subject to both average and discounted costs. To this end, we introduce a mean-field equilibrium (MFE) operator, whose fixed point is a mean-field equilibrium (i.e. equilibrium in the infinite population limit). We first prove that this operator is a contraction, and propose a learning algorithm to compute an approximate mean-field equilibrium by approximating the MFE operator with a random one. Moreover, using the contraction property of the MFE operator, we establish the error analysis of the proposed learning algorithm. We then show that the learned mean-field equilibrium constitutes an approximate Nash equilibrium for finite-agent games.

Citations (2)

Summary

We haven't generated a summary for this paper yet.