Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the Number of Equivalent Classes on $\mathcal{R}(s,n)/\mathcal{R}(k,n)$ (1912.11189v5)

Published 24 Dec 2019 in cs.IT and math.IT

Abstract: Affine equivalent classes of Boolean functions have many applications in modern cryptography and circuit design. Previous publications have shown that affine equivalence on the entire space of Boolean functions can be computed up to 10 variables, but not on the quotient Boolean function space modulo functions of different degrees. Computing the number of equivalent classes of cosets of Reed-Muller code $\mathcal{R}(1,n)$ is equivalent to classifying Boolean functions modulo linear functions, which can be computed only when $n\leq 7$. Based on the linear representation of the affine group $\mathcal{AGL}(n,2)$ on $\mathcal{R}(s,n)/\mathcal{R}(k,n)$, we obtain a useful counting formula to compute the number of equivalent classes. Instead of computing the conjugate classes and representatives directly in $\mathcal{AGL}(n,2)$, we reduce the computation complexity by introducing an isomorphic permutation group $P_n$ and performing the computation in $P_n$. With the proposed algorithm, the number of equivalent classes of cosets of $R(1,n)$ can be computed up to 10 variables. Furthermore, the number of equivalent classes on $\mathcal{R}(s,n)/\mathcal{R}(k,n)$ can also be computed when $-1\leq k< s\leq n\leq 10$, which is a major improvement and advancement comparing to previous methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.