Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Control variates and Rao-Blackwellization for deterministic sweep Markov chains (1912.06926v1)

Published 14 Dec 2019 in math.ST, math.PR, stat.ME, and stat.TH

Abstract: We study control variate methods for Markov chain Monte Carlo (MCMC) in the setting of deterministic sweep sampling using $K\geq 2$ transition kernels. New variance reduction results are provided for MCMC averages based on sweeps over general transition kernels, leading to a particularly simple control variate estimator in the setting of deterministic sweep Gibbs sampling. Theoretical comparisons of our proposed control variate estimators with existing literature are made, and a simulation study is performed to examine the amount of variance reduction in some example cases. We also relate control variate approaches to approaches based on conditioning (or Rao-Blackwellization), and show that the latter can be viewed as an approximation of the former. Our theoretical results hold for Markov chains under standard geometric drift assumptions.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube