Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Individual predictions matter: Assessing the effect of data ordering in training fine-tuned CNNs for medical imaging (1912.03606v1)

Published 8 Dec 2019 in cs.CV, cs.LG, eess.IV, and stat.ML

Abstract: We reproduced the results of CheXNet with fixed hyperparameters and 50 different random seeds to identify 14 finding in chest radiographs (x-rays). Because CheXNet fine-tunes a pre-trained DenseNet, the random seed affects the ordering of the batches of training data but not the initialized model weights. We found substantial variability in predictions for the same radiograph across model runs (mean ln[(maximum probability)/(minimum probability)] 2.45, coefficient of variation 0.543). This individual radiograph-level variability was not fully reflected in the variability of AUC on a large test set. Averaging predictions from 10 models reduced variability by nearly 70% (mean coefficient of variation from 0.543 to 0.169, t-test 15.96, p-value < 0.0001). We encourage researchers to be aware of the potential variability of CNNs and ensemble predictions from multiple models to minimize the effect this variability may have on the care of individual patients when these models are deployed clinically.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.