Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coherent categorification of quantum loop algebras : the $SL(2)$ case (1912.03325v1)

Published 6 Dec 2019 in math.RT

Abstract: We construct an equivalence of graded Abelian categories from a category of representations of the quiver-Hecke algebra of type $A_1{(1)}$ to the category of equivariant perverse coherent sheaves on the nilpotent cone of type $A$. We prove that this equivalence is weakly monoidal. This gives a representation-theoretic categorification of the preprojective K-theoretic Hall algebra considered by Schiffmann-Vasserot. Using this categorification, we compare the monoidal categorification of the quantum open unipotent cells of type $A_1{(1)}$ given by Kang-Kashiwara-Kim-Oh-Park in terms of quiver-Hecke algebras with the one given by Cautis-Williams in terms of equivariant perverse coherent sheaves on the affine Grassmannians.

Summary

We haven't generated a summary for this paper yet.