Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Categorification via blocks of modular representations for sl(n) (1612.06941v3)

Published 21 Dec 2016 in math.RT, math.AG, and math.QA

Abstract: Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products of the standard representation of $\mathfrak{sl}_2$, where they use singular blocks of category $\mathcal{O}$ for $\mathfrak{sl}_n$ and translation functors. Here we construct a positive characteristic analogue using blocks of representations of $\mathfrak{sl}_n$ over a field $\textbf{k}$ of characteristic $p$ with zero Frobenius character, and singular Harish-Chandra character. We show that the aforementioned categorification admits a Koszul graded lift, which is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using coherent sheaves on cotangent bundles to Grassmanians. In particular, the latter admits an abelian refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse equivalence on the derived categories for complementary Grassmanians. This is part of a larger project to give a combinatorial approach to Lusztig's conjectures for representations of Lie algebras in positive characteristic.

Summary

We haven't generated a summary for this paper yet.