Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Learning from an Auxiliary Discriminative Task for Unsupervised Anomaly Detection (1912.02864v1)

Published 5 Dec 2019 in cs.LG, physics.soc-ph, and stat.ML

Abstract: Unsupervised anomaly detection from high dimensional data like mobility networks is a challenging task. Study of different approaches of feature engineering from such high dimensional data have been a focus of research in this field. This study aims to investigate the transferability of features learned by network classification to unsupervised anomaly detection. We propose use of an auxiliary classification task to extract features from unlabelled data by supervised learning, which can be used for unsupervised anomaly detection. We validate this approach by designing experiments to detect anomalies in mobility network data from New York and Taipei, and compare the results to traditional unsupervised feature learning approaches of PCA and autoencoders. We find that our feature learning approach yields best anomaly detection performance for both datasets, outperforming other studied approaches. This establishes the utility of this approach to feature engineering, which can be applied to other problems of similar nature.

Summary

We haven't generated a summary for this paper yet.